数据流产生背景
2022-09-09 浏览次数:101次
数据流应用的产生的发展是以下两个因素的结果:
已经能够持续自动产生大量的细节数据。这类数据较早出现于传统的银行和股票交易领域,后来则也出现为地质测量、气象、天文观测等方面。尤其是互联网(网络流量监控,点击流)和无线通信网(通话记录)的出现,产生了大量的数据流类型的数据。我们注意到这类数据大都与地理信息有一定关联,这主要是因为地理信息的维度较大,容易产生这类大量的细节数据。
需要以近实时的方式对更新流进行复杂分析。对以上领域的数据进行复杂分析(如趋势分析,预测)以前往往是(在数据仓库中)脱机进行的,然而一些新的应用(尤其是在网络安全和*领域)对时间都非常敏感,如检测互联网上的较端事件、欺诈、入侵、异常,复杂人群监控,趋势监控(track trend),探查性分析(exploratory analyses),和谐度分析(harmonic analysis)等,都需要进行联机的分析。
在此之后,学术界基本认可了这个定义,有的文章也在此基础上对定义稍微进行了修改。例如,S. Guha等[88]认为,数据流是“只能被读取一次或少数几次的点的有序序列”,这里放宽了前述定义中的“一遍”限制。
为什么在数据流的处理中,强调对数据读取次数的限制呢?S. Muthukrishnan[89]指出数据流是指“以非常高的速度到来的输入数据”,因此对数据流数据的传输、计算和存储都将变得很困难。在这种情况下,只有在数据较初到达时**会对其进行一次处理,其他时候很难再存取到这些数据(因为没有也无法保存这些数据)。
huizhiqiao.b2b168.com/m/